Management of Critically III Patients

David Tofovic

34 y.o. M

- Presents with to the ED via EMS.
- Unable to provide history.
- Last seen earlier that morning by neighbor.
- Sister states she found him down at home.
- Started CPR, neighbor called 911.
- Sister is a nurse, believed that she couldn't feel a pulse
- Complained of "cold and and a bad cough" several days prior.
- Initial rhythm: asystole
- Epi x 1
- ROSC

- Per Brother/Chart Review:
 - PMHx: SLE, Type 1 Diabetes (well controlled)
 - PSHx: Tonsillectomy, Insulin Pump (recently removed)
 - Allergies: NKDA
 - Home Meds
 - Prednisone (unknown dose or duration)
 - Cellcept (mycophenolate)
 - Glargine
 - Lispro
 - SHx: No tobacco, no EtOH, no illicits
 - FHx: SLE, HTN, DLD, stroke

34 y.o. M

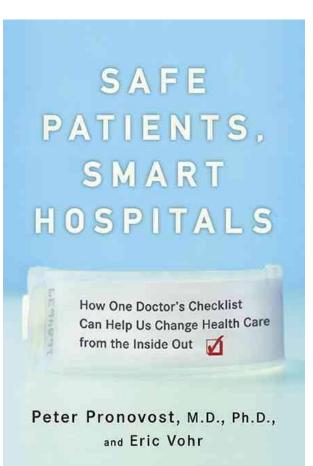
- Vitals:
 - T: 38.3° C
 - HR: 130s
 - BP: 76/44
 - RR: 24
 - Pox: 88% on bag and mask
 - Per EMR: Wgt 88 kgs
 - Per EMR: Hgt 184 cm

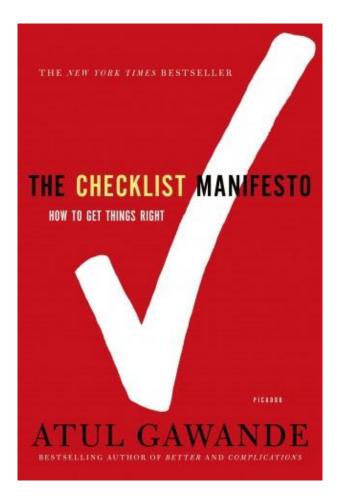
- Physical Exam:
- General: nonresponsive
- CVS: RRR, no m/r/g/c
- Lung: tachypnea, coarse breathe sounds bilaterally
- Neuro: PERRL, GCS 7
- Extremities: Radial, DP and PT 2+, no lower extremity pitting edema
- Skin: No rashes, no ulcers

34 y.o. M

- CBC: 13>17&50.1<294
- RFP: 122/7.3/81/5/74/5.53/1369
- Ca/Mg/Phos: 7.8/2.24/3.3
- INR/PTT: 2.2/64
- LFT
 - AST ~2100
 - ALT ~1800
 - ALKPHOS >3000
 - Tbili: 6.5
 - Dbili:4.1
 - Alb: 3.3
 - Tp: 6.4
- ABG: 6.9/55/18/3.1
- Lactate: 4.8
- Beta-hydroxybutyrate: 6.3

What's wrong?


systems systems systems systems systems systems systems systems


Systems Based

- CVS
- Pulmonary
- Neuro/Psych
- GU
- Gl
- Endo/Rheum
- Infectious
- Heme

- Infectious
- Heme
- Supportive (FASTHUGS BID)
- Lines
- CODE
- Dispo
- PT/OT

Procotalized Medicine

You don't look so good.

Let me just get my senior..

Sepsis

- SIRS Criteria (needs 2/4)
 - T <36° C or >38° C
 - HR > 90
 - Tachynpea
 - RR > 20 or PaCO2 <32mmHg
 - WBC >12 or <4
 - or immature neutrophils >10%

- qSOFA (needs 2/3)
 - AMS (GCS<14)
 - Tachypnea (RR≥22)
 - Hypotension (SBP≤100mmHg)

SOFA

Table 1. Sequential [Sepsis-Related] Organ Failure Assessment Score^a

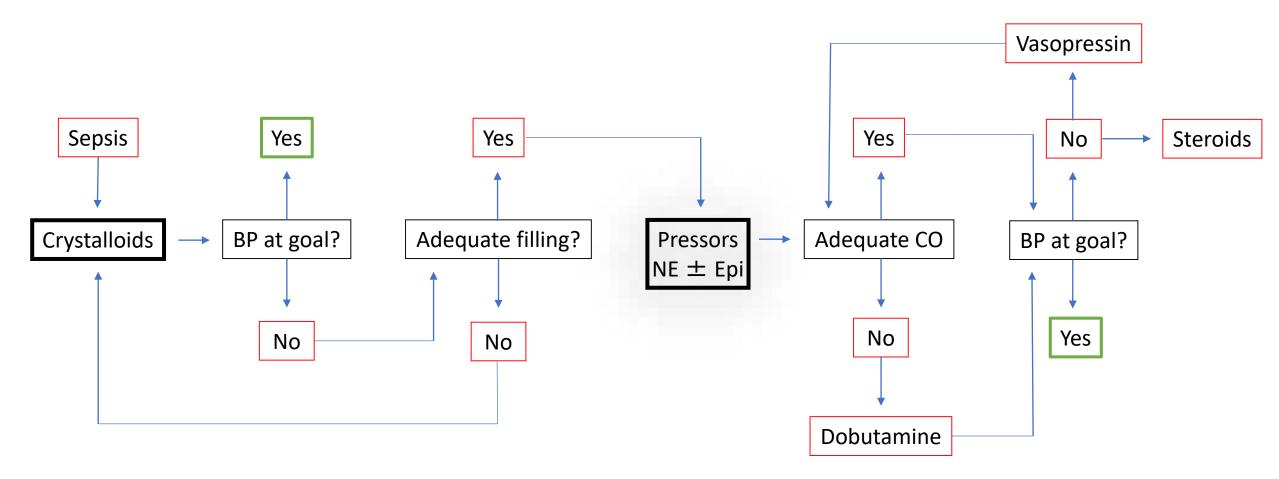
	Score								
System	0	1	2	3	4				
Respiration									
Pao ₂ /Fio ₂ , mm Hg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support				
Coagulation									
Platelets, ×10 ³ /µL	≥150	<150	<100	<50	<20				
Liver									
Bilirubin, mg/dL (µmol/L)	<1.2 (20)	1.2-1.9 (20-32)	2.0-5.9 (33-101)	6.0-11.9 (102-204)	>12.0 (204)				
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1-15 or epinephrine ≤0.1 or norepinephrine ≤0.1 ^b	Dopamine >15 or epinephrine >0.1 or norepinephrine >0.1				
Central nervous system									
Glasgow Coma Scale score ^c	15	13-14	10-12	6-9	<6				
Renal									
Creatinine, mg/dL (µmol/L)	<1.2 (110)	1.2-1.9 (110-170)	2.0-3.4 (171-299)	3.5-4.9 (300-440)	>5.0 (440)				
Urine output, mL/d				<500	<200				
bbreviations: FIO ₂ , fracti	on of inspired oxygen; M	AP, mean arterial pressure;	^b Catecholamine doses a	are given as µg/kg/min for at	t least 1 hour.				
ao ₂ , partial pressure of o	oxygen.		^c Glasgow Coma Scale so	cores range from 3-15; highe	er score indicates better				
Adapted from Vincent e	t al. ²⁷		neurological function.						

M Singer, CS Deutschman, CW Seymour et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-810.

Sepsis

• Within 3 hours

- Obtain lactate level
- Obtain blood cultures prior to administration of antibiotics
 - Unless significantly delays giving abx (>45 minutes)
 - Broad if unknown source
 - Try SIRS orderset
- Give antibiotics (Grade 1B)
- Crystalloid Fluids (Grade 1B)
 - At least 30 cc/kg


• Within 6 hours

- If Septic shock (i.e. hypotension and lactate>2 after fluids), vasopressors (Grade 1B)
- If continued shock, reassess volume status and tissue perfusion.
 - Focused exam (i.e. vital signs, cardiopulmonary, capillary refill, pulse and skin findings)
 - Two of the following
 - CVP
 - ScvO2
 - TTE
 - Passive leg raise or fluid challenge

Septic Shock

- 1st line pressor (Grade 1B)
 - Norepinephrine (Levophed)
 - Requires central venous access
 - Can be given peripherally for a short time.
 - Code White nurses
- 2nd line pressor (Grade 2B)
 - Epinephrine
- Can add vasopressin
 - No titration, run at steady dose of 0.03-0.04 units/min
 - Effective in severely acidotic patients
- If nonresponsive aforementioned management, consider steroids.
 - Hydrocortisone 50mEq IV q6hrs
 - Taper once shock resolves
- Evaluate CO
- HgB >7

Septic Shock

Are Great

But why intubate?

- Ventilation
 - CO2 exchange issue
- Oxygenation
 - O2 exchange issue
- Work of Breathing
- Airway Protection

- Control Types
 - Volume Control (VC)
 - Inhalation proceeds until set tidal volume is obtained
 - Risk of barotrauma
 - Pressure Control (PC)
 - Inhalation proceeds until a set peak inspiratory pressure is obtained
 - "Dual Control"
 - Pressure controlled to give set volume, automatically adjusts pressure based on lung compliance

- Mode Types
 - Assist/Support
 - Delivers volume/pressure with patient effort
 - Detects assist pressure
 - Which can be adjusted
 - Control
 - Delivers volume/pressure regardless of patient effort
 - Assist-Control (A/C)
 - Both support types are utilized

- Phases of cycle
 - Trigger
 - What causes the beginning of the respiratory cycle
 - Typically flow vs pressure
 - Autotriggering
 - Limit
 - What determines the size of breathe
 - Cycle
 - What causes the end of the breathe

- Continuous Mandatory Ventilation (CMV)
 - Assist-Control mode
 - Given set breathe rate
 - Spontaneous breathes above set rate **are** supported
- Intermittent Mandatory Ventilation (IMV)
 - Given set breathe rate
 - Spontaneous breathes above set rate **are NOT** supported
 - SIMV = synchronized IMV to match patient's breathing rate
- Continuous Spontaneous Ventilation (CSV)

OOoooOo! What are all these buttons?!

- Vents will be set to either CMV (A/C) or CPAP (if weaning)
 - Unless paralyzed or inverse-ratio
- Oxygenation
 - FiO2
 - PEEP
 - Inspiration time
- Ventilation
 - Frequency
 - Tidal Volume
 - Expiration time

New Tube? Where to start?

- Depends on the reason for intubation.
- Lung Protective Strategy
 - based on the ARDSNet ARMA study (showed mortality benefit)
 - Most patients, particularly anyone showing signs of lung injury
 - Goal is to reduce barotrauma and volutrauma
 - Low tidal volumes
- Obstructive Strategy
 - Asthma/COPD with active bronchospasm
 - Goal is prevent autoPEEPing by allowing for maximum exhalation
 - Slower rates, no PEEP

New Tube? Where to start?

	Lung Protective Strategy	Obstructive Strategy
Mode	Volume assist control	Volume assist control
Tidal volume	Start at 8 mL/kg PBW; adjust for plateau pressure goal	8 mL/kg PBW
Inspiratory flow rate	Start at 60 L/min; adjust for comfort	60-80 L/min
Respiratory rate	Start at 16 breaths/min; adjust for PaCO ₂ goal	Start at 10 breaths/min; adjust to allow full expiration
PEEP	Start at 5 cm H ₂ 0; adjust according to table	0 cm H ₂ O (some may treat pt with PEEP \leq 5 cm H ₂ O)
FiO ₂	Start at 40%; adjust according to table	Start at 40%; adjust for $SpO_2 \ge 88\%$
Check for safety	Measure plateau pressure. If \geq 30 cm H ₂ O, decrease tidal volume by 1 mL/kg	Measure plateau pressure or observe flow time graph. If plateau pressure ≥30 cm H ₂ O or flow/time graph shows incomplete expiration, decrease respiratory rat

Weingart, S. Managing initial mechanical ventilation in the emergency department. Ann Emerg Med. 2016;68:614–617.

Acute Respiratory Distress Syndrome

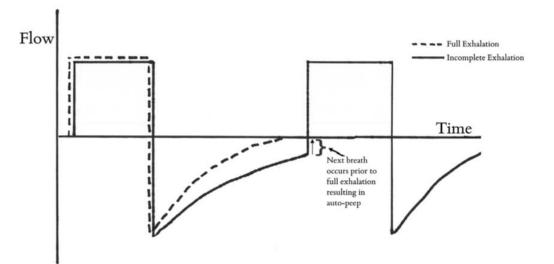
- Widespread inflammation in the lungs due to stressor
 - Alveolar damage, surfactant dysfunction, deceased lung compliance
- Inclusion Criteria
 - PaO2/FiO2 >300mmHg
 - Bilateral (patchy, diffuse, or homogeneous) infiltrates consistent with pulmonary edema
 - No evidence of left atrial hypertension (i.e. L sided heart failure)

Lower PEEP/higher FiO2

FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12

FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0
PEEP	14	14	14	16	18	18-24

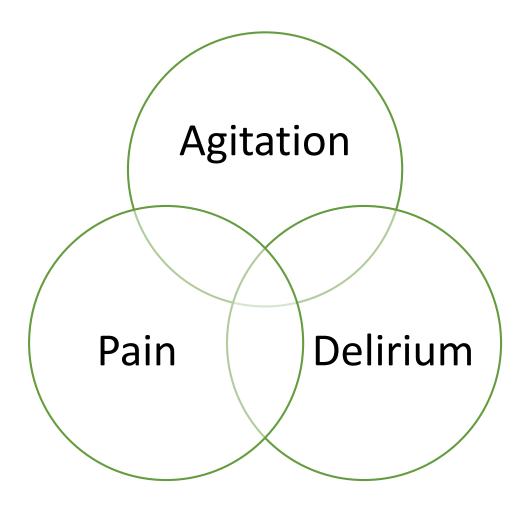
Higher PEEP/lower FiO2


FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5
PEEP	5	8	10	12	14	14	16	16

FiO ₂	0.5	0.5-0.8	0.8	0.9	1.0	1.0
PEEP	18	20	22	22	22	24

Fanelli, Vito; Ranieri, V. Marco (2015-03-01). "Mechanisms and clinical consequences of acute lung injury". Annals of the American Thoracic Society. 12 Suppl 1: S3-8.

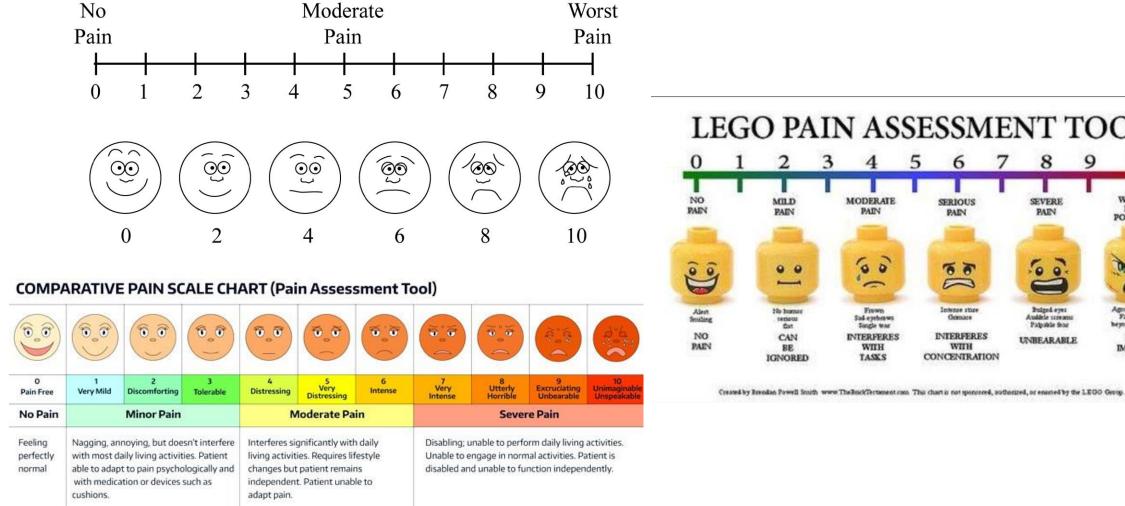
Auto-PEEP


- Incomplete expiration
- Leads to hyperinflation
 - I.e. airtrapping
- Increased alveolar pressure
- Leads to..
 - BAROTRAUMA!!!
 - Decreased venous return
- Check by end expiratory hold
- Treatment:
 - Disconnect from ventilator
 - Rarely require significant external PEEP
 - Overcomes obstruction

So I'm intubated? Now what?

- Feeding/fluids: All intubated patients on enteral feeding after 48hrs
- Analgesia
- Sedation
- Thromboprophylaxis
- Head up position: All intubated patients with head of bed >30 $^{\circ}$
- Ulcer prophylaxis: All intubated patients > 24hrs
- Glycemic control: BG 140-180
- Spontaneous breathing trial
- Bowel care: All intubated patients >24 hrs
- Indwelling catheter removal: know insertion dates, are they still needed
- **D**escalation of antibiotics.

Sedation Algorithm



Richmond Agitation-Sedation Score

+4	Combative	Overtly combative/violent; immediate danger to others
+3	Very Agitated	Reaching at tube(s) or catheter(s) or aggressive behavior
+2	Agitated	Frequent nonpurposeful movement or patient-ventilator dyssynchrony
+1	Restless	Anxious or apprehensive
0	Alert and Calm	Spontaneously paying attention
-1	Drowsy	Not fully alert, but >10 seconds awakening to voice with eye contact
-2	Light Sedation	>10 seconds awakening to voice with eye contact
-3	Moderate Sedation	Any movement to voice
-4	Deep Sedation	No response to voice, but movement to physical stimulation
-5	Unarousable	No response to voice or physical stimulation

Curtis N. Sessler, Mark S. Gosnell, Mary Jo Grap, Gretchen M. Brophy, Pam V. O'Neal, Kimberly A. Keane, Eljim P. Tesoro, and R. K. Elswick "The Richmond Agitation–Sedation Scale", American Journal of Respiratory and Critical Care Medicine, Vol. 166, No. 10 (2002), pp. 1338-1344. doi: 10.1164/rccm.2107138

Visual Analogue Scale (VAS)

LEGO PAIN ASSESSMENT TOOL 8 9 10 5 6 4 WORST MODERATE SERIOUS SEVERE PAIN PAIN PAIN PAIN POSSIBLE 6 0 50 00

-

Frown

F

Intense store

Grimace

INTERFERES

WITH

CONCENTRATION

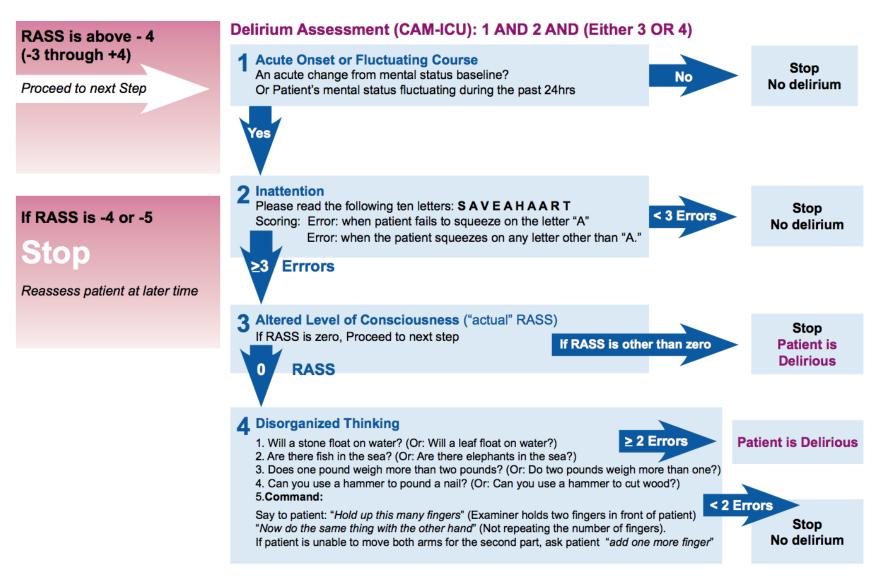
Bulged over

Padpable fear

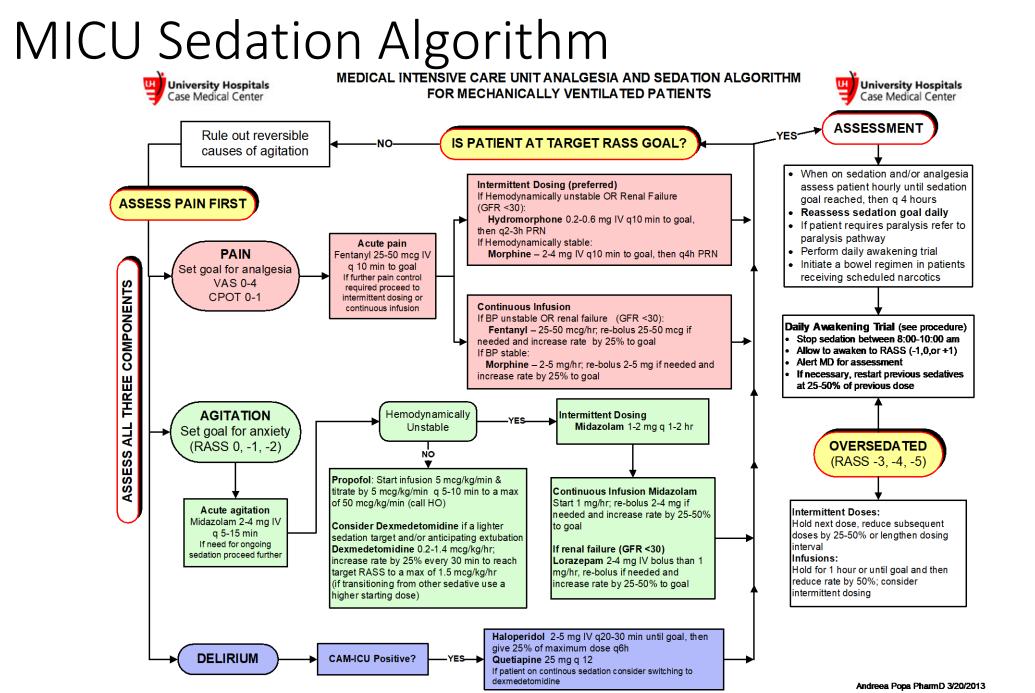
UNBEARABLE

Auddele screams

Agonizing sceward


beyond perogration

Face datarted


DEATH

IMMINENT

Confusion Assessment Method for ICU

Gusmao-Flores D, Salluh JI, Chalhub RA, Quarantini LC. The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. Crit Care 2012; 16: R115.

I'm tired of this ventilators..

- Spontaneous Awakening Trial (SAT) Screen
 - Reason for ventilation is improving
 - FiO2 < 55%
 - PEEP ≤ 5 mmHg
 - Off paralytics
 - Hemodynamically Stable
 - Acceptable pH/O2/CO2/bicarb
 - No seizures
 - No myocardial ischemia
 - No withdrawal symptoms
- If ok, hold tube feeds and sedation holiday
- Once daily

I'm tired of this ventilators..

- Spontaneous Breathing Trial (SBT)
 - PS ≤ 5 mmHg and/or PEEP ≤ 5 mmHg and/or trach collar
 - RR between 38-6 bpm
 - SpO2 > 92%
 - Tidal volume > 325 mL
 - Stable HR (stop if HR >140 or 25% above baseline)
 - Stable BP(stop if SBP >40 above baseline)
 - No significant agitatation
 - Rapid Shallow Breathing Index (RSBI) <105 min/L
 - RSBI = Rate/tidal volume
 - Best predictor

- Negative Inspiratory Force (NiF)
 - ≤ -30mmHg H20
- Minute ventilation:
- RR x Vt <10 to 15L/min
- Spontaneous volume:
- ≥ 5 ml/kg

I love acid-base!

Said no one.. ever.

6 Step guide

- Is the patient acidotic or alkalotic?
 - cutoff is pH = 7.4
- What is the primary abnormality?
 - Bicarb and PCO2 always go..
 - Same direction as pH in metabolic disorder
 - Opposite direction as pH in respiratory disorder
- If a primary respiratory disorder, is it acute or chronic?

Acute Respiratory Acidosis	expected ↓pH =	0.08	Х	<u>(PaCO2 - 40)</u> 10
Chronic Respiratory Acidosis	expected ↓pH =	0.03	Х	<u>(PaCO2 - 40)</u> 10
Acute Respiratory Alkalosis	expected 个pH =	0.08	Х	<u>(40 – PaCO2)</u> 10
Chronic Respiratory Acidosis	expected 个pH =	0.03	Х	<u>(40 - PaCO2)</u> 10

Morganroth, M. 1990. Six steps to acid-base analysis: Clinical Applications. The Journal of Critical Illness. 5, 460-469.

6 Step guide

• For metabolic alkalosis..

Chloride Responsive	Chloride Resistance
Urine chloride < 10 mEq/L	Urine chloride > 20 mEq/L
Usually hypovolemic	Usually hypervolemic/hypertensive
Emesis	Hyperaldosteronism
Prior Diuretics	Current Diuretics
Contraction alkalosis	Antacids
Post hyperventilation	Bartter/Liddle Syndrome
Cystic Fibrosis	Aminoglycoside Toxicity

6 Step guide

- Is the metabolic disturbance, appropriately compensated?
 - For metabolic acidosis, use Winter's formula
 - Expected PaCO2 = $1.5 \times HCO3 + 8 \pm 2$
 - If measure PaCO2 > expected PaCO2, then also primary respiratory acidosis
 - If measure PaCO2 < expected PaCO2, then also primary respiratory alkalosis
 - For metabolic **alkalosis**, PaCO2 should be >40 and less than 50
- Is there a second metabolic disorder?
 - Delta Ratio (Δ Ratio) = (AG 12) / (24 HCO3⁻)
 - < 0.4 pure NAGMA (or mixed*)
 - 0.4 0.8 mixed NAGMA + HAGMA
 - 0.8 2.0 pure HAGMA
 - >2.0 mixed HAGMA + metabolic alkalosis (or pre-existing compensated respiratory acidosis)

Case 1

Na 123, Cl 99, HCO3 5, PaCo2 10, pH 7.31

- Step 1
 - Acidotic
- Step 2
 - Primary metabolic acidosis
- Step 3
 - Skip
- Step 4
 - AG = 19, so AGMA
- Step 5
 - Expected PaCO2 between 13-17, but PaCO2 is 10. So primary respiratory alkalosis.
- Step 6
 - Delta ratio = (19-12)/(24-5) = 0.37

Mixed AGMA + primary respiratory alkalosis + NAGMA

Case 2

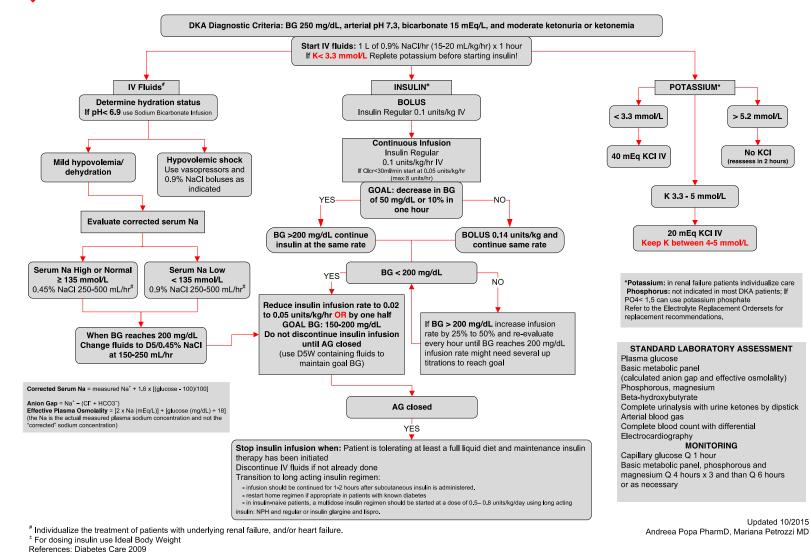
Na 135, Cl 93, HCO3 30, PaCo2 80, pH 7.18

- Step 1
 - Acidotic
- Step 2
 - Primary respiratory acidosis
- Step 3
 - If acute, pH = 7.08, if chronic pH = 7.28, so..

Mixed acute ON chronic respiratory acidosis

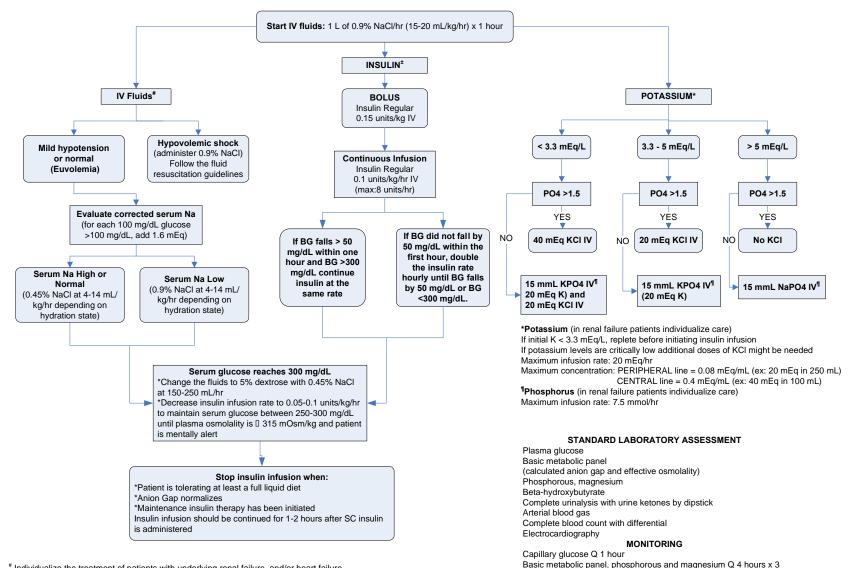
Case 3

Na 130, Cl 78, HCO3 10, PaCo2 25, pH 7.20


- Step 1
 - Acidotic
- Step 2
 - Primary metabolic acidosis
- Step 3
 - Skip
- Step 4
 - AG = 42, so AGMA
- Step 5
 - Expected PaCO2 between 21-25, but PaCO2 is 25. So no respiratory disturbance
- Step 6
 - Delta ratio = (42-12)/(24-10) = 2.14

Mixed AGMA + primary metabolic alkalosis

Diabetic Ketoacidosis


University Hospitals Case Medical Center

MEDICAL ICU GUIDELINES FOR THE MANAGEMENT OF ADULT PATIENTS WITH DIABETIC KETOACIDOSIS Use the corresponding "Diabetic Ketoacidosis Management" orderset available in UHCare

Hyperosmolar Hyperglycemia

GUIDELINES FOR THE MANAGEMENT OF ADULT PATIENTS WITH HYPEROSMOLAR HYPERGLYCEMIC STATE

[#] Individualize the treatment of patients with underlying renal failure, and/or heart failure. ^{*} For dosing insulin use Ideal Body Weight

Diabetes Care 27:S94102, 2004

and than Q 6 hours or as necessary

- 1. See bottom of individual slides.
- 2. My brain.

Special Thanks

• To everyone who helped developed the MICU handouts.